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Abstract. An alternative approach based on the invariant imbedding method and the random
phase approximation is used to study the excitation spectra of both neutral and parabolic quantum
wells. Compared to other methods, this approach is efficient and leads to more stable solutions. It
also provides a convenient way for studying boundary effects. The calculated excitation spectra for
both types of quantum well agree well with experimental observations and previous calculations.
The effects of the boundary condition on the excitation spectra were extensively studied. It was
found that the positions and relative strengths of resonant peaks are sensitive to the boundary
condition. The evolution of some of the resonant peaks can be attributed to the coupling between
collective plasma modes and the intersubband transitions.

1. Introduction

With modern crystal growth techniques, such as molecular beam epitaxy (MBE) and metal
organic vapour deposition (MOCVD), it is possible to grow high quality Ga1−xAl xAs quantum
well structures, and by controlling the Al composition,x, arbitrary shape for the conduction
band minimum energy,Ec, can be obtained along the growth direction [1, 2]. WhenEc is
parabolic inside the quantum well region and linear outside, the quantum well is referred to
as a neutral quantum well (NQW). By contrast, ifEc is parabolic everywhere, the structure
is called a parabolic quantum well (PQW) (see figure 1). The study of excitation modes in
those structures has received considerable attention in recent years [3–10] due to the significant
roles these excitation modes play in the transport and optical properties of these structures.
Two types of surface plasma modes [11], 2D-like surface plasmon and bulklike plasmon,
have been observed in the far-infrared (FIR) transmission spectra of the parabolic quantum
well [4]. Yuh et al [12] found that the surface plasmon modes are particularly sensitive to
the surface potentials. The effect of surfaces on the bulklike plasmon modes in metallic
films was theoretically investigated [13]. Theoretical calculations on semiconductor quantum
wells showed that the excitation spectra of neutral quantum wells are quite different from
those of PQWs [8–10]. However, there have been some ambiguities in the identification of the
resonant peaks in the excitation spectra of NQWs. Most of the previous calculations on NQWs
were carried out by imposing the hard-wall boundary condition [8, 9]. Two infinite barriers
were imposed on the boundaries to force the wave functions to vanish at the boundaries (see
figure 1(b)). Recently, Schaich and Dobson [10] studied the excitation spectra in NQWs using
a soft-wall boundary condition (see section 4) and demonstrated that the boundary condition
significantly affects the excitation spectra. In structures such as a resonant tunnelling barrier
(RTB) diodes, the barriers act as boundaries and provide confinement of charge carriers outside
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4558 Q Guo et al

Figure 1. (a) Schematic view of the conduction energyEc of the neutral quantum well (solid curve)
and parabolic quantum well (dashed curve). (b) The self-consistent potential energy of the neutral
quantum well (solid curve) and parabolic quantum well (dashed curve) with widthd = 8.8 au∗
and densityn+ = 0.0275 au∗. The two solid vertical lines show the hard-wall boundary barriers
of the neutral quantum well.Lb represents the distance between the hard-wall boundaries used in
the calculation of the self-consistent electronic structure.Ld stands for the distance between the
hard-wall boundaries used in the calculation of the excitation spectra.

the quantum wells. Studies have shown that the characteristics of RTB diodes can be improved
dramatically by choosing appropriate barrier materials [12]. The structures of such systems
are remarkably similar to quantum wells with hard-wall boundaries.

In the calculation of excitation modes, the ground state electronic structure of quantum
wells is usually obtained by employing the local density approximation (LDA). Their excitation
spectra are generally evaluated using the random phase approximation (RPA). In most of
these calculations, the self-consistent electronic structure is found by numerical integration of
the one-dimensional Schrödinger equation. As for the free response function, two different
methods have been employed to evaluate the Green function appearing in the free response
function. In the first method [15, 16], the Green function is obtained by summing over the
energy eigenstates. For neutral quantum wells this sum becomes an integral over the energy
continuum above the escape threshold (the plateau value of the total potential energy outside the
well). This method is time consuming because the sum over the eigenstates converges slowly.
In the second method, the sum of the eigenstates is first converted to a Green function which is
expressed in terms of a product of ‘left’ and ‘right’ moving solutions of the one-dimensional
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Schr̈odinger equation [17]. The second method is obviously more efficient than the first one.
However, for regions where the solution is exponentially increasing or decreasing, it may cause
numerical instability if the step size is not sufficiently reduced. For three-dimensional wells,
the problem is potentially more serious. In such cases, round-off errors would destroy the
linear independence of intermediate solutions for evanescent channels and cause numerical
difficulties. In the present study of excitation spectra in NQWs and PQWs, we adopt an
alternative approach based on the invariant imbedding method for the calculation of the self-
consistent electronic structure [18]. In this approach, the Green function is calculated from
the reaction matrix in the complex energy plane. The free response function is calculated
by integrating the Green function over a contour in the complex energy plane. Because the
integrand is smooth, only a few integration points are required. Therefore, the method provides
a more efficient and stable scheme for the calculation of excitation spectra of quantum wells. It
has been shown that the calculated ground state properties are in good agreement with available
experimental data and previous theoretical results. Furthermore, the boundary condition is
naturally embedded in the calculation of reaction matrix and its effects on the excitation
modes can be readily studied using this approach. Calculation using a one-dimensional
potential is presented in the following. The formalism, however, can be easily extended
to three-dimensional structures. The invariant imbedding method has been used in the study
of electronic structures of jellium surfaces [19], atom–molecule scattering [20] and reflection
high energy electron diffraction (RHEED) [21] and it has been proved to be a successful and
efficient method.

In this study, the method is used first to calculate the excitation spectra of the PQW. It
is then extended to the study of the excitation spectra of the NQW. The effects of boundary
condition on the excitation modes are investigated. In the following section, we will describe
the theory underlying the approach. The numerical method will be discussed in section 3. In
section 4, the calculated results pertaining to the excitation spectra of both the NQW and PQW
will be presented. The evolution of the resonant peaks in the excitation spectra of the NQW
due to the change of boundary condition and their physical origins will be discussed. Finally
we will summarize our results in section 5.

2. Theory

For Ga1−xAl xAs quantum wells, the effective mass,m∗, is about 0.069m0 and the dielectric
constant,ε0, is around 13.0. The effective Bohr radius,a0, is around 100 Å, which is much
larger than the lattice constant. We can therefore ignore the crystalline structure of the host,
and assume that the spatially varying energyEc(z) due to the varying composition along the
quantum well growth directionz takes the role of an external potential energy functionVbare(z)

based on the envelope function approximation. The electron is then confined in thez direction
by the potentialVbare(z) plus its own self-consistent electrostatic field with effective massm∗,
but free to move in thex andy directions parallel to the epitaxial layers. In the Ga1−xAl xAs
system, the spatially varying Al content gives rise to a spatial variation of the effective mass and
of the semiconductor dielectric constant of up to 10% in experiment [4], which will be ignored
in the present work. Within this approximation, the self-consistent Kohn–Sham eigenfunction
of quantum wells may be written as

9J ≡ 9k‖,j (Er) =
1

3π
exp(Ek · Eρ)ψj (z) (1)

with eigenenergy

EJ ≡ E(Ek‖, j) = εj + 1
2k

2
‖ (2)
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whereEr is a position vector, andEρ andz are the projections ofEr parallel and normal to the
well respectively, whileEk‖ is the projection ofEk parallel to the well.εj is the eigenenergy
of the one-dimensional Schrödinger equation with self-consistent potential, andψj(z) is the
corresponding eigenfunction.

For independent electrons moving in the self-consistent ground state potential, the density
responseδnf to a small time-dependent external perturbation,

δv = vx(z, q‖) exp[i(Eq‖ · Er − ωt)] (3)

can be written as

δnf (z, q‖, ω) =
∫

dz′50(q‖, z, z′, ω)vx(z′, q‖) (4)

where the free response function is given by

50(q‖, z, z′, ω) = 1

2π2

occ∑
i

ψi(z)ψi(z
′)
∫

dEk‖
{∑

j

ψj (z)ψj (z
′)

ε+ − εj +
∑
j

ψj (z)ψj (z
′)

ε− − εj

}
(5)

where

ε± = εi ± (ω + Ek‖ · Eq‖)− 1
2q

2
‖ . (6)

It is noted that the two terms in the braces of equation (5) are just the Green functions for the
one-dimensional Schrödinger equation with energy ofε+ andε− respectively. Therefore the
free response function can be written as

50(q‖, z, z′, ω) = 1

2π2

acc∑
i

ψi(z)ψi(z
′)
∫

dEk‖[G+(z, z′, ε+) +G+(z, z′, ε−)]. (7)

In most of the previous works, the free response functions were numerically obtained by
two different methods. One method is based on equation (5), where the sums over intermediate
one-dimensional eigenstatesj are carried out directly. This sum becomes an integral overε+

(ε−) above the escape threshold. The second method makes use of equation (7). The Green
function is evaluated in terms of ‘left moving’ and ‘right moving’ solutions at energyε+ andε−

respectively of the one-dimensional Schrödinger equation. However, the first method is time
consuming and the second method may cause numerical instability in some cases as discussed
above. In the following, we use an alternative approach based on the invariant imbedding
method for the calculation of dynamic response function of a quantum well in the RPA.

It can be proved that the Green function at a certain plane of the quantum well can be
written as

G(z, z′, ε) = − i

kz
D(z, z′, ε) (8)

where

kz =
√

2ε (9)

andD(z, z′, ε), the propagation function, is the total amplitude of the scattered plane wave at
z′ if there are two plane waves starting atzwith energyε and directionsk+

z andk−z respectively.
We will discuss the form ofD(z, z′, ε) in the case ofz′ > z. Assuming the region to the right
of z′ is free space, the sum of amplitudes of scattered plane waves atz′ is

D′(z, z′, ε) = M++(1 +M2(z))

1−M2(z)M−+
(10)

whereM2(z) is the reflection matrix from the potential region (−∞, z);M++ andM−+ are the
transmission and reflection matrices respectively for a wave moving along the +z direction due
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to the potential slab betweenz andz′ (see figure 2). Adding the potential to the right ofz′, the
total amplitude of scattered plane wave becomes

D(z, z′, ε) = D(1 +M1(z
′))

1−M1(z′)M2(z′)
(11)

whereM1(z
′)andM2(z

′)are reflection matrices from the potential region(z′,∞)and(−∞, z′)
respectively (see figure 2). Substituting equation (10) into equation (11), we obtain

D(z, z′, ε) = (1 +M2(z))M
++(1 +M1(z

′))
(1−M1(z)M−+)(1−M1(z′)M2(z′))

(z′ > z). (12)

Similarly, we have

D(z, z′, ε) = (1 +M2(z))M
−−(1 +M2(z

′))
(1−M1(z)M+−)(1−M1(z′)M2(z′))

(z′ < z). (13)

whereM1(z) is the reflection matrix from the potential region with (z,∞);M−− andM+− are
the transmission and reflection matrices respectively for a wave moving along the−z direction
due to the potential slab betweenz andz′.

To obtain the transmission and reflection matrices of a slab, we first divide a slab into thin
slices within which the potential can be considered to be approximately constant. Consider
an incident plane wave with wave vectorkz propagating through a slice of thicknessh with

Figure 2. Scattering matrices:M1(z) andM2(z) are reflection matrices from the potential region
on the right ofz and on the left ofz respectively;M1(z

′) andM2(z
′) are reflection matrices due to

the potential region on the right ofz′ and the left ofz′ respectively;M++ andM−+ are transmission
and reflection matrices respectively for a right moving incident wave due to the potential slab
betweenz andz′; M−− andM+− are transmission and reflection matrices respectively for a left
moving incident wave due to the potential slab betweenz andz′.
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constant potentialv (see figure 3). It can be proved that the transmission matrixm++ and
reflection matrixm−+ are given by

m++ = − 4kzκz eiκzh

ei2κzh(kz − κz)2 − (kz + κz)2
(14)

m−+ = − (kz − κz)2(ei2κzh − 1)

ei2κzh(kz − κz)2 − (kz + κz)2
(15)

respectively, where

κz =
√
k2
z − v. (16)

As each slice has a constant potential, we obtain by spatial inversion symmetry

m−− = m++ (17)

and

m+− = m−+. (18)

To obtain transmission matricesM++ andM−+ for a slab, we first assumeM++ andM−+ are
known, then add one more slice to the slab (figure 4). LetM̄++ andM̄−+ be the transmission
and reflection matrices for the new slab. It can be proved thatM̄++ andM++ are related by

M̄++ = M++(1 +m+−M−+ +m+−M−+m+−M−+ + · · ·)m++ (19)

or

M̄++ = M++m++

1−m+−M−+
(20)

and the relation between̄M−+ andM−+ is given by

M̄−+ = m−+ +
m++M−+m−−

1−m+−M−+
. (21)

Starting from the boundary condition atz = z′ for whichM++ = 1 andM−+ = 0, we can
obtainM++,M−+ for the slab between anyz andz′ by equations (20) and (21).M−− andM+−

can be found by

M−− = M++ (22)

Figure 3. Scattering of a plane wave by a thin slice of constant potential.
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Figure 4. (a) Scattering matrices of a slab and those of a thin slice added on top of the slab.
(b) Scattering paths through the system shown in (a).

and

M+− = M−+. (23)

The calculation of reflection matricesM1 andM2 based on the invariant imbedding method is
carried out with the same code as the previous work [20]. It is noted that equations (20) and
(21) and the equations ofM1 andM2 are exact as long as the potential of the slice is a constant
no matter how large the widthh of the slice is. The step sizeh can be chosen adaptively
according to the gradient of the potential in the numerical scheme.

Once the scattering matrices are found, the propagation function can be determined by
equations (12) and (13). Substituting equations (12) and (13) into equation (8), we can obtain
the Green functions forz′ > z andz′ < z respectively. The free response function can be
calculated by integrating over wavevectorEk‖, and summing over the eigenstates below the
Fermi energy in equation (7). It is interesting to note that the boundary condition is included
in the calculation of the reflection matricesM1 andM2, which means that one only has to alter
the starting point values of the reflection matricesM1 andM2, when the boundary condition
is changed. Previous works have shown that the boundary condition has a considerable effect
on the collective modes [10]. Various boundary conditions can be readily incorporated in the
present method.



4564 Q Guo et al

Similar to equation (4), the RPA density response function is defined as

δnRPA(z, q‖, ω) =
∫

dz′5RPA(q‖, z, z′, ω)v(z′, q‖). (24)

It can be proved that the RPA response function is related to the free response function by the
integral equation

5RPA(z, z′, Eq‖, ω) = 50(z, z′, Eq‖, ω)
+
∫ ∫

dz1 dz25
0(z, z1, Eq‖, ω)υ(z1, z2)5

RPA(z2, z
′, Eq‖, ω) (25)

where

υ(z1, z2) = ∂2

∂n2
(nεxc)δ(z1− z2) +

2π

q‖
exp(−q‖|z1− z2|) (26)

is the function describing the dependence of the potential field on the electron density for a
quantum well.εxc is the exchange–correlation kernel.

In order to simulate spatially nonuniform excitation of a quantum well, the external
perturbation potential is chosen to be

vx(z, q‖) = exp(q‖z). (27)

So the strength function can be calculated by

M(q‖, ω) = −Im
∫ ∫

dz dz′ exp(q‖z)5RPA(z, z′, q‖, ω)exp(q‖z′). (28)

This strength function can be directly obtained from experimental measurements. The
same function appears in the dipole theory of electron energy loss [22] as well as the theory
of infrared (IR) absorption aided by a grating coupler [23, 24].

3. Numerical method

In this section, we will discuss the numerical procedures for the calculation of the excitation
spectra of GaAs/Ga1−xAl xAs quantum wells based on the invariant imbedding method
developed in section 2.

For the calculation of the free response function, we choose thex axis such thatkx is
parallel toEq‖. Equation (7) can be rewritten as

50(q‖, z, z′, ω) = 1

π2

occ∑
i

ψi(z)ψi(z
′)
∫ ki

−ki
dkx

√
k2
i − k2

x [G
+(z, z′, ε+) +G−(z, z′, ε−)] (29)

where

ki =
√

2(εf − εi) (30)

ε± = εi ± (ω + kxq‖)− 1
2q

2
‖ . (31)

The above function is evaluated on a discrete grid ofz andz′ points. In order to produce
numerically tractable results, a small imaginary part of 0.002 au∗ (starred Hartree units, see
below) has been added toω, the frequency of the external field, that isω → ω + iδ. Since
the free response function has a cusp atz′ = z, thez′ integral will be split into two parts at
z′ = z, and the integral overz′ is done by Gaussian quadrature. It is noted that although the
wave function above the Fermi level spreads far outside the quantum well, especially for the
neutral quantum well, the wave functions below the Fermi energy will decrease very quickly to
zero outside the quantum well and so does the free response function. In the present work, the
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Green functions, sums of the eigenstates both below and above the Fermi energy, are obtained
by the invariant imbedding method. Only a few points are taken to sample the region where
the wave functions below the Fermi level are almost zero and the self-consistent potential is
nearly constant. The integration of the Green functionG+ along the real axis in thekx plane
from −ki to ki is deformed into a semicircle in the upper half complex plane. Because the
Green functions are much smoother functions ofkx along such a path than along the real axis,
only a few points need to be sampled in the integration. In contrast,G−(z, z′, ε∗) is analytic
in the lower half complex plane. Using the basic property of the Green function,

G∗(z, z′, ε) = G(z′, z, ε∗) (32)

we compute the Green functionG−(z, z′, ε−) in the same way asG+(z, z′, ε+).
Ignoring frequency dependence, the exchange–correlation kernelεxc in equation (26) is

chosen to be the simple Wigner form [25] for both the ground state and the excited state,

εxc = −0.458

rs
− 0.44

rs + 7.8
(33)

where

rs ≡ rs(z) = [ 4
3πn(z)]

−1/3 (34)

andn(z) is the self-consistent electron density. The RPA response function is calculated by
solving the matrix equation (25).

Previous theoretical works [8–10] indicated that the shape of the quantum well and the
boundary condition of the electron gas in the neutral quantum well have a considerable effect
on the collective modes in the quantum well of the Ga1−xAl xAs system. In this work, we
will compare the collective modes of neutral quantum wells (NQWs) with those of parabolic
quantum wells (PQWs). According to the Poisson equation, we can mimic the bare confining
potentialVbare(z) of the quantum well due to a varying composition along thez direction
as the potential due to the positive charge distribution with densityn+ in a slab [26]. In the
calculation, such a fictitious positive chargen+ is used to parametrize the quantum wells. The
width d of the positive charge region in a neutral quantum well is defined as the width of
the quantum wells. The approximate widthNS/n+ that the electrons occupy in a parabolic
quantum well is taken to be the widthd for the parabolic quantum well. In the present work,
we calculate the dynamic response by imposing hard walls at different positions to explore the
effects of boundary conditions on the excitation spectra of NQWs.

In our calculation, the effective massm∗ and dielectric constantε are taken to be
m∗ = 0.069m0, andε = 12.9 [27]. For convenience, we use ‘starred Hartree units’, au∗, in
which e2/ε = 1, m∗ = 1, h̄ = 1. So 1 au∗ of length is equal to 102 Å, 1 au∗ of energy is
11 MeV, which is equivalent to a photon with a reciprocal wavelength of 88.5 cm−1.

4. Results and discussion

Experimental far-infrared transmission spectra of Ga1−xAl xAs parabolic quantum wells show
two strong resonance peaks which can be identified as a 2D-like surface plasmon and a bulklike
plasmon [4]. Self-consistent TDLDA and RPA calculations [8–10] on excitation modes of
PQW produced excitation spectra whose major peak positions are in good agreement with the
experiment. Other theoretical studies were based on the non-retarded, local optics model of
a uniform slab of Drude electrons [28]. In this model, the dielectric function within a slab of
thicknessd is written as

ε = ε0(1− ω2
p/ω

2) (35)
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where

ω2
p = 4πn (36)

is the bulk plasma frequency.n is the electron density of the slab. Assuming spatially local
response and neglecting incoherent scattering, the dispersions of the two plasma modes are
given by

ω2
± = 1

2ω
2
p(1± exp(q‖d)). (37)

It was found that equation (37) describes quite well the positions of resonant peaks in the
experimental excitation spectra, especially for small wave vector and narrow quantum wells.
The low-frequency modeω− is attributed to two-dimensional resonant oscillation in the
quantum well parallel to the interface (x–y plane), while the high-frequency modeω+ is
due to transitions between adjacent bound levels in the well corresponding to oscillation of
electrons perpendicular to the interface (z direction). They are referred to as intrasubband and
intersubband plasmon respectively.

To test the present invariant imbedding scheme, we first consider the PQW. The calculated
spectrum Im [M(q‖, ω)] of a PQW withn+ = 0.0275 au∗, d = 8.8 au∗, q‖ = 0.016 au∗

is shown in figure 5. The experimental spectrum of Pinsukanjanaet al is presented for
comparison. It is noted that our results are in good agreement with the experimental data
of Pinsukanjanaet al [4]. In figure 6, we compare the plasmon dispersion relation calculated
by the invariant imbedding approach and that obtained from equation (37). Good agreement
is found between the two sets of data.

Figure 5. Comparison of excitation spectra obtained in the present study (solid line) and
experimental results [4] (dotted line) for a PQW with widthd = 8.8 au∗, densityn+ = 0.0275 au∗,
q‖ = 0.016 au∗ and Im(ω) = 0.002 au∗.

The excitation spectra are more difficult to interpret for neutral quantum wells (NQWs) [8].
The identification of the resonant peaks on the calculated spectra has so far been ambiguous. For
neutral quantum wells, the self-consistent potential energy tends to a plateau valueVp, which is
slightly larger than the Fermi energy as|z| →∝. So the spectrum becomes continuous beyond
Vp. Most of the previous calculations were carried out with hard-wall boundary conditions.
Two infinite barriers were imposed on both boundaries to make the wave functions vanish at
this artificial infinite barrier. Recently, Schaichet al calculated the spectrum with a soft-wall
boundary condition. They used

V (|z| > Lb/2) = Vp (38)
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Figure 6. Dispersion relations (dots) of intersubband plasmon modes (upper curve) and
intrasubband plasmon modes (lower curve) for a PQW calculated with widthd = 8.8 au∗ and
densityn+ = 0.0275 au∗. Solid lines stand for dispersion profiles predicted from the local optical
model.

and matched eachψn to appropriate analytic solutions outside±Lb/2, whereLb is the distance
between the left and right boundaries used in calculation of the self-consistent ground state.
They found that the boundary condition significantly affects the excitation spectra, generally
reducing the number of peaks that appear. Such a reduction of resonant peaks is still not
fully understood. Since the invariant imbedding approach can readily be adapted to various
boundary conditions, it is used here to explore the boundary effects on the excitation spectra
of NQWs.

In NQWs, the electrons spread far outside the well. For an NQW withd = 8.8 au∗,
n+ = 0.0275 au∗, the width of the self-consistent electron distribution is more than 22 au∗,
nearly three times the width of the positive background. In the present work, we calculate
the ground state electronic structures with widthLb = 3d andLb = 4d respectively. The
calculations show that the ground state density profile withLb = 3d is almost the same as
that withLb = 4d, and the plateau value of the self-consistent potentialVp is 0.575 au∗ for
both cases. This is expected because the boundary condition hardly affects the eigenvalues
and eigenfunctions below the Fermi level as long as all the electrons are included in the
calculation (i.e.Lb > 3d in this case). However, it will significantly change the eigenvalues
and eigenfunctions above the plateau value of the self-consistent potential and hence affect
the dynamic response. To study this effect, we adopt the following strategy. In the case of
Lb = 4d, the dynamic response is calculated by imposing hard walls at different positions
zc = ±Ld/2 (see figure 1), whereLd > 4d. The potential betweenLb/2 (−Ld/2) andLd/2
(−Lb/2) is taken to beVp, the plateau value of the self-consistent potential outside the well.
WhenLd →∞, it corresponds to the case of a soft-wall boundary. In figure 7, we present the
excitation spectra Im [M(q‖, ω)] with Lb = 3d, Ld = 3d andq‖ = 0.016 au∗ for an NQW
of n+ = 0.0275 au∗, d = 8.8 au∗. It is found that the number of peaks, the positions and
the relative strength of peaks in the response spectrum are in good agreement with those of
Schaich and Dobson using the hard-wall boundary condition [10] (the dashed line in figure 7).
Since almost the same parameters are used in the two calculations, this again verifies the
validity of the present approach. In figure 8, the excitation spectra Im [M(q‖, ω)] are shown
for n+ = 0.0275 au∗, d = 8.8 au∗ andq‖ = 0.016 au∗ under different boundary conditions.



4568 Q Guo et al

In figure 8(a), we show the excitation spectrum withLb = 3d, Ld = 3d. Figures 8(b)–(d)
show the excitation spectra withLb = 4d, andLd = 4d, 8d, 12d respectively. It is noted in
our calculation that there is a sudden change in the positions and relative amplitudes of most
peaks in the excitation spectra whenLd is increased from 3d to 4d. According to figure 8(b),
a very sharp peak atω = 0.56 au∗ appears instead of peaks HPt and TB3 in figure 8(a), which
are close to the bulk plasmon frequency. Two very close peaks appear instead of the peaks
TB2 and MPt. We note that in figure 8(b) peak TB4 and the small peaks T1, T2 are located at
almost the same positions as in figure 8(a). The peak TB1, atω = 0.268 au∗, vanishes, and
a new small peak TB5, atω = 0.34 au∗, appears. WhenLd is increased, peaks T1 and T2
gradually grow and some weak resonances appear and vanish again. When we move the hard
wall toLd = 12d in figure 8(d), the calculated spectrum yields three stable and strong peaks
T2, MP, HP in the frequency region from 0.35 au∗ to the bulk plasmon frequency. They are at
frequencies 0.385, 0.470 and 0.570 au∗ respectively, which correspond to the three peaks in the
excitation spectrum with the soft-wall boundary [10]. The three peaks LP, T1, T2 in figure 8(d)
correspond to LP, T1, T2 in figure 8(a). However it is difficult to find the corresponding peaks
in figure 8(a) for the two peaks MP, HP in figure 8(d). It is noted that the peaks in figure 8(d)
with a hard-wall boundary condition ofLd = 12d are much sharper than those with soft-wall
boundaries [10]. We expect that ifLd is increased further, the peaks will broaden and resemble
those calculated with the soft-wall boundaries.

Figure 7. Comparison of excitation spectra (solid curve) for an NQW withd = 8.8 au∗, density
n+ = 0.0275 au∗, q‖ = 0.016 au∗ under hard-wall boundary conditionsLb = Ld = 3d with those
(dotted curve) calculated by Schaich and Dobson under similar conditions [10].

To understand the origin of the resonances, we calculate the induced electron density,
which is defined as

δn ≡ δnRPA(ω, z) = −Im
∫

dz′5RPA(z, z′, ω)exp(q‖z′). (39)

Consider first the excitation spectrum shown in figure 8(d). The frequency and the induced
density of the strongest peak LP are similar to those of the PQW, so it is readily identified as
the intrasubband plasmon. That its position is independent of the boundary conditions also
confirms the identification. The resonance HP has been identified withω+, the intersubband
plasmon mode [8–10]. The position and the induced density profiles in our calculation
also support this identification. Schaich and Dobson [10] attributed peak MP to both the
multipole plasma mode and intersubband transition resonance. In our calculation, the peak
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Figure 8. Comparison of the excitation spectra for an NQW withd = 8.8 au∗, density
n+ = 0.0275 au∗, q‖ = 0.016 au∗ under different boundary conditions: (a)Ld = 3d, (b)Ld = 4d,
(c)Ld = 8d, (d)Ld = 12d. The self-consistent electron structures are calculated withLb = 3d for
(a),Lb = 4d for (b), (c), (d). The intrasubband plasmon modes (low-frequency modes) are labelled
as LP. The intersubband plasmon modes (high-frequency modes) are labelled as HP. The multipole
plasmon modes are labelled as MP. T1 and T2 represent the intersubband transition resonances
whose frequencies are independent of the boundary conditions, while TB1, TB2, TB3, TB4, TB5
stand for the intersubband transition modes whose positions depend on the boundary conditions.

MP demonstrates the characteristics of the multipole plasma mode, which is usually observed
on simple metal surfaces [29–32]. Firstly, the frequency is about 0.8 ωp. Secondly, the
induced density profile is odd inz and the integrals of the induced density with respect to each
surface are nearly zero. So this resonance can be identified as a collective multipole plasma
mode rather than an intersubband transition. The peaks T1 and T2 can be identified as the
intersubband transitions from the third subband to the fifth subband and from the third subband
to the fourth subband respectively [10]. We find that the corresponding induced density profiles
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in our calculation, shown in figure 9, are nearly identical to those of Schaich and Dobson [10].
The energies of the third, fourth and fifth subbands are hardly altered when we increaseLd
because they are below the plateau value of the self-consistent potentialVp. So the fact that
the positions of the peaks T1, T2 are almost independent of the boundary conditions confirms
the above identification of peaks T1 and T2.

Figure 9. Induced density profiles corresponding to peaks (a) T1,ω = 0.23 au∗ and (b) T2,
ω = 0.391 au∗ in the excitation spectra of figure 8(a).

In what follows, we will consider the origins of the remaining peaks in figure 8(a). Shown
in figures 10(a)–(c) are the induced densities of TB1, TB2 and TB3 respectively. They can
be identified as the intersubband transitions of third to sixth, third to eighth, and second to
seventh subbands respectively by comparing their induced density profiles with the single-
particle estimates, which are generated from the product

δnij = ψi(z)ψj (z) (40)

for transition from the initial statei to the final statej . The expression is what appears in
the first order perturbation theory. At resonance, the contribution of one transition should
dominate. The strong dependence of these peaks on the boundary conditions supports the
identification because their final states are all aboveVp.

In order to understand the evolution of some of the resonant peaks, we propose the
following physical picture of the resonant coupling of the plasmon modes and the intersubband
transitions. When the frequency of a plasmon crosses that of the intersubband transition, the
plasma mode and the intersubband transition mode will interact with each other, and then
will split into two neighbouring peaks, with the weak resonance being enlarged. There have
been previous investigations on the coupling between different kinds of excitation modes
[5, 6, 33–37]. The resonant interaction of intrasubband plasmon and intersubband plasmon
was first calculated by Das Sarma [33] using an RPA in a two-band model, and later by Li
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Figure 10. Induced density profiles (solid line) corresponding to peaks (a) TB1,ω = 0.268 au∗,
(b) TB2, ω = 0.442 au∗, (c) TB3, ω = 0.587 au∗ in the excitation spectra of figure 8(a).
The dashed lines represent single-particle estimates based on equation (40): (a)(i, j) = (3, 6),
1ε36 = 0.287 au∗, (b) (i, j) = (3, 8),1ε38 = 0.0478 au∗, (c) (i, j) = (2, 7),1ε27 = 0.537 au∗.

and Das Sarma [34], and by Gold and Ghazali [35]. Experimentally, such coupling has been
observed by Oeltinget al [36] in a two-dimensional electron system on silicon–MOS structures
by tuning their energies via uniaxial stress. Recently it was observed in a parabolically confined
electron system by Kaloudiset al [5]. The coupling of the intersubband plasma mode and
inter-Landau transition was studied by Liaoet al [6]. The influence of the collective excitation
on the intersubband transition energies has been observed in the determination of the specific
single-particle energies in the inversion electrons in GaAs in optical experiments [37, 38].
However, to the best of our knowledge, there has been no report on theoretical or experimental
study on the strong coupling of collective modes and intersubband transitions. In figure 8,
when we decrease the distance between the hard walls fromLd = 12d to Ld = 8d, two new
intersubband transitions appear close to the multipole plasmon MP and intersubband plasmon



4572 Q Guo et al

Figure 11. Excitation spectrum for an NQW with widthd = 8.8 au∗, densityn+ = 0.0275 au∗,
q‖ = 0.040 au∗ and Im(ω) = 0.002 au∗.

HP respectively, which result in slight shifts in position and decreases in amplitude of both
peaks MP and HP. WhenLd = 4d, the peak near peak HP disappears and the amplitude of peak
HP increases, while the peak near MP starts to split. WhenLd is further decreased, the peak HP
splits into two widely separated peaks HPt and TB3, while MP and the peak nearby are split into
distinct peaks MPt and TB2. From figure 8(a)–(d), asLd is varied, the amplitudes of peaks
MP and HP decrease when they are approached by neighbouring peaks and increase again
when the neighbouring peaks move away. So we may associate the peaks MPt and HPt with
collective modes MP and HP respectively. The induced densities also confirm the association.
The small peaks that emerge inLd = 8d are related to intersubband transitions TB2 and TB3
respectively. As discussed above, the variation ofLd will change the final state energies of
TB2 and TB3, which are both aboveVp. This in turn will alter their intersubband transition
frequencies. FromLd = 4d to Ld = 12d, the intersubband transitions TB2 and TB3 have
little effect on the positions and amplitudes of the collective modes MP and HP because their
resonant frequencies are not sufficiently close to those of the collective modes. WhenLd is
decreased to 3d, the frequencies of the two intersubband transitions cross those of the plasmon
modes MP and HP respectively. As a consequence, a strong resonant interaction of plasmon
modes and intersubband transitions gives rise to the large shift of resonance frequencies and
the enhancements of the resonances. So the calculated spectra show all the characteristics of a
resonant interaction, i.e. a resonant enhancement of the intersubband resonant amplitude and
a splitting of the dispersion. Similar to some previous works [6–8], we have identified three
plasma modes in the neutral quantum well, i.e. intrasubband plasma mode, multipole plasma
mode and intersubband plasma mode respectively. We have observed the resonant coupling
of the multipole plasmon and intersubband plasmon with the intersubband transitions. As for
the intrasubband plasmon, there is a very weak nearby intersubband transition resonant peak,
T1. However there is no interaction between them because their frequencies are 0.08 au∗

apart. It is well known that the intrasubband plasmon has a large positive dispersion [28]. We
will consider what happens when its frequency crosses that of the peak T1 by increasing the
wavevector. Shown in figure 11 is the calculated excitation spectrum for the same quantum well
with q‖ = 0.040 au∗. The results are just as expected. A strong resonant coupling between the
intrasubband plasmon and intersubband transition resonance T1 results in a shift of resonant
frequencies and strong enhancement of the intersubband transition. Taking this picture into
account, we can explain the physical causes of all the resonant peaks in the excitation spectra.
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The resonant peaks can be classified into two groups. One group is due to collective resonance,
which are intrasubband plasma mode LP, multipole plasma mode MP and intersubband plasma
mode HP respectively. The other group is due to the intersubband transition. The frequencies
of these resonant peaks are almost independent of the boundary condition if their final states
are belowVp, the plateau value of the self-consistent potential outside the well. However,
these resonant modes are not stable and their resonant frequencies depend on the boundary
conditions if their final states are aboveVp. In the case when these two types of excitation
mode cross each other, a resonant coupling gives rise to an enlargement of the intersubband
transition amplitude and shifts in the resonance frequencies.

5. Concluding remarks

An alternative approach based on the invariant imbedding method is used to study the excitation
spectra of both the NQW and PQW. Compared to other approaches, the present method is more
efficient and leads to more stable solutions. The boundary conditions are naturally incorporated
in the calculation, and therefore it provides a convenient way for studying boundary effects.
The calculated results for both the NQW and PQW are in good agreement with available
experimental data and results of previous calculations. It was found that the positions of
resonant peaks on the spectra of the NQW are sensitive to the boundary condition. Evolution
of the resonant peaks was shown to be due to coupling between collective plasma modes
and intersubband transitions. The observed resonant peaks of the NQW have been classified
according to their physical origins and the dependence of their properties on the boundary
condition.

It is interesting to note that when the barrier (AlAs) width and height of an
InGaAs/AlAs/InAs resonant tunnelling diode grown on an ZnP substrate by MBE [14] are
sufficiently large, the system will behave like a quantum well with hard-wall boundaries. The
position of the wall can be adjusted by varying the width of the InGaAs layer. According to
the present work, the resonant coupling between collective plasma modes and intersubband
transition modes can be studied in such a system with the appropriate boundary conditions.
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